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Abstract
The aim of the analysis was to develop a phenomenological longitudinal population pharmacokinetics (PK)-anti-drug 
antibodies (ADA) model to enable an informed and quantitative framework for assessment of ADA influence. Data used 
were from seven clinical studies of avelumab across drug development phases in patients with several tumor types. ADA 
as covariate in a population PK model, and Markov models of ADA status (ADA+ or ADA−) were investigated. Finally, a 
joint PK-ADA model was developed. In the population PK models that evaluated ADA as a covariate, the clearance increase 
attributable to ADA+ status was 8.5% (time-varying ADA) to 19.9% (time-invariant ADA with inter-occasion variability 
in clearance). With a discrete-time Markov model (DTMM), tumor type was identified as a significant covariate on the 
probability of ADA− to ADA+ transition. When ADA time course predicted by the DTMM model was implemented as a 
covariate in the population PK model, an increase in avelumab clearance of 11–41% was estimated depending on tumor 
type. With a continuous-time Markov model (CTMM), in addition to tumor type, baseline ADA status was identified to 
significantly influence the ADA− to ADA+ transition rate constant. The joint PK-CTMM model estimated the maximal 
increase in CL due to ADA as 15% and a decrease in ADA− to ADA+ transition rate of up to 37% with increasing avelumab 
concentration, with 50% of the maximum decrease occurring at 349 µg/mL. The present work established a framework for 
the assessment of interactions between PK and immunogenicity for therapeutic proteins.
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Introduction

Immunogenicity, the development of anti-drug antibodies 
(ADA), is an important characteristic of therapeutic proteins, 
affecting pharmacokinetics (PK) and pharmacodynamics 
(PD), including drug efficacy and safety [1, 2]. 
Immunogenicity is an inherent characteristic of therapeutic 
proteins, resulting from natural immune processes, but 
ADA development can also be influenced by intrinsic and 
extrinsic factors such as the underlying disease and its status, 
or comedication with immune system-altering drugs, such as 
corticosteroids, immunomodulators, or chemotherapy [3, 4].

Mechanistically, all ADA form immune complexes 
with drug molecules which are subsequently eliminated, 
thereby increasing the clearance of the drug to varying 
extents. At the same time, ADA (especially neutralizing 
ADA, which bind to target-binding sites on the drug 
molecule) can inhibit drug molecules binding to their 
targets, thus potentially negating the pharmacological 
activity of the drug, in addition to lowering its exposure 
owing to increased clearance (CL). ADA-drug immune 

complexes can also cause anaphylactic/hypersensitivity 
reactions. For cancer immunotherapies, it has been 
proposed that development of ADA might be a surrogate 
marker of immune system activation and therefore drug 
efficacy [2].

Due to the complexity inherent in ADA (different IgG 
classes, only semi-quantitative analytical methods, and 
an array of other complications), the kinetics of ADA 
development are difficult to characterize [5]. The effects 
of ADA on PK, efficacy, and safety of drugs are often 
investigated by classifying patients as ADA+ (developed 
ADA at any point during the trial) or ADA− (never 
developed ADA during the trial) in a time-constant 
manner. This way, valuable information is lost, whereas 
modeling ADA structurally and in a time-varying manner 
would reduce this information loss by enabling the use 
of ADA information over time. Furthermore, assigning 
ADA status on patient level (ADA ever/never) is 
pharmacologically not appropriate for describing causal 
relationships and additionally introduces immortal-time 
bias [6], as this non-baseline variable is treated as known 
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at baseline, thereby confounding the results of such 
analyses. The fact that ADA are commonly reported as 
titers, not absolute concentrations, further complicates 
analysis in a quantitative mechanistic manner. Finally, 
simulations with ADA are typically not feasible in the 
absence of a model describing their development.

Published population models that account for ADA 
usually include overall ADA status (ever/never or, less 
frequently, ADA as a time-varying covariate) as a covariate 
on CL or volume of distribution (V), not as a part of a 
structural model [7]. Further, many approaches are limited 
to accounting only for patients who develop ADA and are 
not suitable for describing ADA− patients. While limitations 
inherent to the observed ADA data (such as having only 
titers available) cannot be fully circumvented, a longitudinal 
PK-ADA model would theoretically enable an informed and 
less biased framework for assessment of ADA influence.

Avelumab is a human immunoglobulin G1 (IgG1) anti-
programmed death ligand 1 (PD-L1) monoclonal antibody 
[8] with a wild-type fragment crystallizable (Fc) region, 
indicated as monotherapy for the treatment of adult patients 
with metastatic Merkel cell carcinoma (MCC), first-
line maintenance treatment of adult patients with locally 
advanced or metastatic urothelial carcinoma (UC) who are 
progression-free following platinum-based chemotherapy, 
and in combination with axitinib for first-line treatment of 
adult patients with advanced renal cell carcinoma (RCC) [9].

The overall aim of this investigation was to develop a 
bidirectional joint PK-ADA model on an immuno-oncology 
data set to establish a framework for assessing the impact of 
immunogenicity on drug PK. As the first step, within this 
project, two alternative approaches to account for ADA 
were investigated: (1) ADA as a time-varying covariate in 
a population PK model, and (2) a Markov model of ADA 
status linked to a population PK model. Markov models are 
mathematical models that describe systems which transition 
from one state to another, with the probability of each 
transition depending only on the current state and not on 
the previous states [10].

Apart from the interaction between systemic drug 
concentrations and ADA status, the ADA status analysis 
included investigating covariate effects on ADA status 
transitions. Potential effects of tumor type were also 
investigated within the covariate analysis.

Methods

Data

The analysis was performed using pooled data of patients 
treated with avelumab across drug development phases with 
different oncology indications from multiple clinical trials. 

An overview of the analyzed patient population is given in 
Table 1. Data from 1892 patients with evaluable PK data 
were used in the analysis and were split into two subsets 
stratified by ADA incidence (ever vs never ADA+): a subset 
for model development (1513 patients, ~ 80% of data) and a 
validation subset (379 patients, ~ 20% of data). Previously, 
a population PK model developed on data from 3 of the 7 
clinical trials was published [11].

Avelumab concentrations were quantified using an 
immunoassay sandwich method (interrun coefficient of 
variation [CV] ≤ 16.1%, bias [absolute value] ≤ 15.5%, total 
interrun error ≤ 19.1%). The lower limit of quantification 
was 0.2 μg/mL [11]. ADA testing was conducted using a 
tiered assay approach, whereby samples that were screened 
and confirmed positive for ADA were subsequently analyzed 
to determine the titer using the homogeneous bridging 
electro chemiluminescent immuno-assay [12]. The following 
numbers of data points/participants were used for the model 
development and evaluation: PK development, 12,707/1513; 
PK evaluation, 3362/377; CTMM development, 14,874 
/1495; CTMM evaluation, 3925/375; DTMM development, 
14,247/1513; and DTMM evaluation, 3766/378. The 
average number of ADA samples and collection times are 
provided in Table 1. Missing ADA data were ignored in the 
analyses. There was no minimum ADA data requirement for 
a patient to be considered evaluable. Only 7 patients with 
neutralizing antibody were reported, and for 76 data points, 
the neutralizing antibody information was missing.

Avelumab population PK model

A previously-developed population PK model for avelumab 
formed the basis for PK-ADA model development [11]. This 
model was 2-compartmental, with time-dependent clearance 
(CL; Fig. 4). Decrease in CL was modeled as a sigmoid 
maximal inhibitory response process [13]:

Here, CLi,t is CL in individual i at time t  , TVCL is the 
typical value of CL in the population, Imax,i is the maximal 
possible change in CL relative to baseline for individual i , 
ti is the time after first dose in individual i , T50 is the time at 
which 50% of Imax is reached, � describes the shape of the 
relationship, and �CL,i is interindividual variability (IIV) in 
CL for individual i , defined as being normally distributed 
with a mean of 0 and variance of �2

CL
 . In addition to CL, 

IIV was included on central volume of distribution (V1) 
and Imax (additively for the latter). The residual error was 
described by a combined additive and proportional error 
model. For the current analysis all covariate effects were 

CLi,t = TVCL ⋅ exp

(
Imax,i ⋅ t

�

i

T
�

50
+ t

�

i

)
⋅ exp(�CL,i)
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removed except body weight as a covariate on CL and V1 
using standard allometry coefficients [14].

Joint PK‑ADA model

Two approaches to model ADA data were investigated: (1) 
ADA as a covariate in the population PK model, and (2) 
Markov models of ADA status. Finally, a PK-ADA model 
linked the Markov model for ADA status to the population 
PK model to assess the bidirectional effect of ADA status 
on PK and drug exposure on ADA status simultaneously. 
The modeling strategy started with model development for 
models with lower complexity/computational burden and 
progressed to models with higher complexity/computa-
tional burden. ADA status was evaluated for effect on ave-
lumab PK as a categorical covariate on avelumab clearance 
using different categorizations of ADA status: ADAEVER 
(time-invariant, ever vs never ADA+), ADAONCE (time-
varying, ADA+ at first appearance of ADA and thereafter), 
and ADALOCF (time-varying, ADA+ vs ADA−) as graphi-
cally demonstrated in Fig. 1.

The ADA part of the joint model was considered be 
Markovian in nature, since it is likely to depend on state 
transitions over time: ADA− to ADA+ , and back again, 

based on the previous state, and on time. ADA status was 
modeled using two-state discrete-time (DTMM) and two-
state continuous-time (CTMM) Markov models. The Markov 
ADA-models were evaluated using VPCs for both the 
probability of ADA status as well as the probability to change 
ADA state or to remain in the same ADA state. Covariate 
relationships identified for the DTMM were included in the 
CTMM. The joint PK-ADA model was constructed by linking 
the population PK model to the CTMM to assess the effects 
of ADA on avelumab clearance and the effect of avelumab 
exposure on ADA status.

Discrete‑time Markov models

Discrete-time Markov models (DTMMs) assume time to be a 
discrete variable, the recorded observation times in a clinical 
study. DTMM equations describe the transition probability 
from state kj−1 to state kj , or more simply, the probability of 
each state kj at the current occasion j given that state kj−1 was 
observed at the previous occasion j −1 [15].

The DTMM (Fig. 2) may be summarized as follows:

P01,i,j = P(Yi,j = 1|Yi,j−1 = 0)

Fig. 1   Categories of time-vari-
ant ADA, using a representative 
patient
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Here, P01 is the probability of a transition from 
ADA− (state 0) to ADA+ (state 1) in individual i at 
observation occasion j ,  P10 is the probability of a transition 
from ADA+ to ADA− in individual i  at observation 
occasion j , P00,i,j is the probability that ADA remains 
negative in individual i at observation occasion j , and P11,i,j 
is the probability that ADA remains positive in individual i 
at observation occasion j . Yi,j is the observed value of ADA 
(+ or −) in individual i at observation occasion j , while Yi,j−1 
is the observed value of ADA (+ or −) in individual i at 
preceding observation occasion j−1.

The probabilities were estimated using a logit 
transformation:

Here, P01,i is the individual realization of patient i ’s 
probability to transition from ADA− to ADA+ where TVP01 
is the typical value of the probability in the population, and 
�P01

 is the IIV defined as being normally distributed with a 
mean of 0 and variance of �2

P01
.

Continuous‑time Markov models

The continuous-time Markov model (CTMM) is more 
appropriate for non-uniform observation times, although 
for two-state data, the DTMM and CTMM methods may 
produce similar results for naturally discretized data (e.g. 
prespecified time points based on clinical trial designs) 
[10]. In this method, the influence of the previous state on 

P00,i,j = P
(
Yi,j = 0|Yi,j−1 = 0

)
= 1 − P01,i,j

P10,i,j = P(Yi,j = 0|Yi,j−1 = 1)

P11,i,j = P(Yi,j = 1|Yi,j−1 = 1) = 1 − P10,i,j

P01,i =
1(

1 + exp

(
−

(
TVP01+�P01

)))

the probability of the current state typically decreases with 
increasing time between observations [16–18].

Here, �01,i is the transfer rate constant from state 0 to 
state 1 in individual i , �10,i is the transfer rate constant 
from state 1 to state 0 in individual i , and Δti,j is the time 
difference between the current and previous observations in 
individual i at observation occasion j . Other parameters are 
as previously defined. Treatment and covariate effects can 
be applied to �01 and �10.

P00,i,j =
�10,i + �01,i ⋅ e

−(�10,i+�01,i)⋅Δti,j

�01,i + �10,i

P01,i,j = 1 − P00,i,j

P11,i,j =
�01,i + �10,i ⋅ e

−(�10,i+�01,i)⋅Δti,j

�01,i + �10,i

P10,i,j = 1 − P11,i,j

Fig. 2   Structure of the discrete-
time Markov model. p10 ∶ 
probability to transition from 
ADA+ to ADA−; p01 : probabil-
ity to transition from ADA− to 
ADA+

Fig. 3   Structure of the continuous-time Markov model (CTMM). �10 : 
rate constant for ADA+ to ADA− transition; �01 : rate constant for 
ADA− to ADA+ transition; A1 : probability for ADA+ ; A0 : probabil-
ity for ADA−
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In the current case, the CTMM was implemented as ordi-
nary differential equations (ODEs) representing the prob-
abilities of ADA being negative or positive (Fig. 3):

A0 and A1 represent the probabilities of ADA being negative 
and positive, respectively. Using this approach, modifications 
to the data file were necessary to facilitate analysis with 
NONMEM (version 7.4.3) [19]; compartment amounts 
and associated bioavailability values were reset after each 
observation [18]. Aside from ADA status itself, covariates 
on ADA state transition probabilities were considered, 
particularly tumor type. The transition rates were estimated 
using a log transformation:

dA0

dt
= −�01 ⋅ A0 + �10 ⋅ A1

dA1

dt
= �01 ⋅ A0 − �10 ⋅ A1

�01,i = exp
(logTV�01

+��01)

Here, �01,i is the individual realization of patient i ’s transi-
tion rate from ADA− to ADA+ where TV�01

 is the typical value 
of the transition rate in the population and ��01 is the IIV 
defined as being normally distributed with a mean of 0 and 
variance of �2

�01
.However, the data did not support the 

estimation of IIV in �01 or �10.
The joint PK-ADA model combined the base population 

PK model (without ADA effect or IOV) with the final 
CTMM (including covariates). The models were linked by (1) 
estimating the correlation between avelumab clearance and 
�01 , (2) effect of probability of ADA+ status ( p1 ) on clearance 
(mono-directional joint PK-ADA model), and (3) time-course 
of the effect of avelumab exposure on the �01 and the effect 
of p1 on clearance (bi-directional joint PK-ADA model). The 
typical values of avelumab clearance, �01 , and the associated 
IIV parameters were estimated. All other parameters were 
fixed to the final typical values of the estimates of the base 
population PK model and the final CTMM.

The bi-directional effects are demonstrated in Fig. 4. The 
effect of p1 on avelumab CL ( P1eff ,i ) was modeled as a linear 

Fig. 4   Structure of the bidirectional joint PK-ADA model. CL: 
clearance; Q: intercompartmental clearance; V1: central volume of 
distribution; V2: peripheral volume of distribution; P1eff  : effect of 
probability of ADA+ on CL; C1eff  : effect of concentration in cen-
tral compartment on probability of ADA+ ; Timeeff  : effect of time 
on CL; Imax : maximum change in CL relative to baseline; T50 : time 
for half of maximum effect; � ∶ shape of time effect curve; Emax_c1 : 
maximum change in effect of exposure on rate of transition from 

ADA− to ADA+ ; EC50 : concentration for half of maximum expo-
sure effect; �c1 : shape of exposure effect curve; Emax_p1 : maximum 
change in CL due to ADA; EP150 : probability of ADA+ for half of 
maximum ADA effect; �p1 : shape of the ADA effect curve; �10 : rate 
constant for ADA+ to ADA− transition; �01 : rate constant for ADA− 
to ADA+ transition; p1 : probability for ADA+ ; p0 : probability for 
ADA−
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or as a non-linear relationship between p1 (independent vari-
able) and CL (dependent variable):

Here, k10,i , CLi , and V1i are the avelumab elimination 
rate constant from the central compartment, avelumab CL, 
and central volume of distribution, respectively, for patient 
i . In the linear model the intercept is set to 1 (no change) 
and sl is the slope of change in p1. The nonlinear model 
is a sigmoidal Emax model, and Emax_P1 and EP50 are the 
maximum effect and 50% of the maximum effect of p1 on 
clearance. �CP1 describes the shape of the relationship.

The link model for the relationship between exposure and 
rate of ADA transition ( C1eff  ) is a sigmoidal Emax model:

Here, C1t,i is avelumab concentration in the central 
compartment in individual i at time t , Emax_C1∙ is the typical 
value of the maximal possible change in �01 relative to 
baseline, EC50 is the typical value of the concentration at 
which 50% of Emax_C1∙ is reached, and �C1 describes the 
shape of the relationship. The direction of the maximum 
change (i.e. an increase or a decrease) was not specified but 
was limited to a range of − 100% to 500%.

Covariate model

Potential covariate relationships were explored graphically 
by plotting the potential covariates versus the parameters of 
interest. Graphical exploration procedures were only relied 
upon if the degree of η-shrinkage in the parameters was 
reasonably low (< 30%) [20].

Covariate analysis for the population PK model 
was restricted to the relationship between the different 
categorizations of ADA status (ADAEVER, ADAONE, 
ADALOCF, etc.) and avelumab CL. The ADA-CL 
relationship was implemented using a linear function:

k10,i =
CLi

V1i
⋅ P1eff ,i ⋅ e

(Timeeff+�CL,i)

P1eff ,i = 1 + sl ⋅ p1i (linear model)

P1eff ,i = 1 +
Emax_P1 ⋅ p1

�P1
t,i

EP
�P1
50

+ p1
�P1
t,i

(non-linear model)

�01,i = e(C1eff ,i∙log��01+��01)

C1eff ,i = 1 +
Emax_C1∙C1

�C1
t,i

EC
�C1
50

+ C1
�C1
t,i

CLi = TVCL ⋅

(
1 + �ADA

)

Here, CLi is CL in individual i , TVCL is the typical 
value of CL in the population, and �ADA is the estimated of 
change in CL when ADA+ . For the DTMM and CTMM, 
covariate relationships included demographics (age, sex, 
and race), disease-related status (serum albumin, C-reac-
tive protein [CRP], Eastern Cooperative Oncology Group 
performance score [ECOG] status, tumor type, and base-
line tumor burden), previous and current concomitant ther-
apies (previous use of biologics or PD-L1 inhibitors), and 
baseline laboratory results and organ function (aspartate 
transaminase [AST], alanine transaminase [ALT], creati-
nine, creatinine clearance, bilirubin, estimated glomerular 
filtration rate [eGFR]). Categorical covariates were tested 
using a linear function and continuous covariates were 
tested using power functions (see below).

Covariate model development was performed stepwise 
(using the stepwise covariate modeling tool in Perl-speaks-
NONMEM [PsN], version 5.3.0) [21, 22]. Each candidate 
covariate was tested on each of the parameters of interest, 
one at a time. The parameter-covariate relationship pro-
ducing the largest change in the NONMEM objective func-
tion value (OFV) was retained. This process was repeated 
as a series of forward model-building steps until no further 
parameter-covariate relationships were present that met the 
forward inclusion criterion (a change in OFV of − 3.843, 
corresponding to a nominal significance level of p = 0.05). 
A backward elimination process was then undertaken, in 
which each relationship was removed one at a time. At 
each backward step, the parameter-covariate relationship 
with the lowest change in OFV and not meeting the back-
ward elimination criterion (a change in OFV of + 10.83, 
corresponding to a nominal significance level of p = 0.001) 
was removed. The process was concluded when no further 
parameter-covariate relationships could be removed.

The testing of categorical covariates was implemented 
using a linear function, as follows:

where PARCOVi is the parameter value for individual i , PARi 
is the typical value of the parameter in the population, and 
�PAR,COV ,val is an estimated parameter corresponding to the 
unique value of the categorical covariate in individual i . 
For the largest or reference category, �PAR,COV was defined 
as 0. Covariate categories containing less than 20 patients 
were not separately tested (except for tumor type) but instead 
lumped with the reference case (typically the category with 
highest frequency in the population).

Testing of continuous covariates was performed using 
a power function, as follows:

PARCOVi = PARi ⋅

(
1 + �PAR,COV ,val

)
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where PARCOVi and PARi are as previously defined, COVi is 
the value of the covariate in individual i , COV  is the median 
value of the covariate in the population, and �PAR,COV is a 
parameter describing the shape of the relationship of the 
covariate to the parameter.

Model evaluation and qualification

Stratification was used when appropriate to ensure that 
the model could be evaluated adequately across important 
subgroups of the data. The adequacy of the models was 
evaluated using visual predictive checks (VPC) [23]. 
The population PK and PK-ADA models were used to 
simulate 500 replicates (model development) or 1000 
replicates (external validation) of the analysis data set. 
Statistics of interest were calculated from the simulated 
and observed data for comparison: the 2.5th, 50th 
(median), and 97.5th percentiles of the distributions of 
the simulated concentration at each sampling time bin 
were calculated. These percentiles of the simulated data 
were plotted versus time, with the original observed data 
set and/or percentiles based on the observed data overlaid 
to visually assess concordance between the model-based 
simulated data and the observed data.

PARCOVi = PARi ⋅

(
COVi

COV

)�PAR,COV Final models were used to predict dependent vari-
ables (avelumab concentrations and/or ADA data) based 
on the patients in the data  set who were  set aside for 
external validation (20% of the data set) at the individual 
and population level (the latter using VPCs). These were 
compared with observations to provide an assessment of 
the model’s predictive ability.

Results

Population PK models with ADA as time‑invariant 
or time‑varying covariate on clearance

The increase in avelumab CL attributable to ADA+ status 
ranged from 8.5% (time-varying model using the time-
course of ADA status to influence CL) to 19.9% (time-
invariant model with inter-occasion variability [IOV] in CL). 
The IOV in CL (4%) was negligible compared with inter-
individual variability (IIV) in CL (34%), and the inclusion of 
IOV did not change the estimates of IIV. Simulation-based 
evaluations (VPCs) confirmed that predictive performance 
of the PK models was acceptable. The results of the effects 
of ADA on avelumab CL and the associated computation 
burden (relative estimation time) are summarized in Table 2. 
The parameter estimates for each model (Table 7) and the 
goodness of fit plots for the population PK model (Fig. 9) are 
provided in the supplementary material.

Table 2   Summary of effect of ADA status on avelumab CL conditioned on the modeling approach

ADAEVER time-invariant categorical covariate (0 = “ADA−  Never” or 1 = "ADA+ : At least once”); ADAONCE time-variant categorial 
covariate, CL mean of individual clearance values, IOV inter-occasion variability (evaluation limited to the first 12 visits), NA not applicable, 
PPK population pharmacokinetic, TVCL typical population value of clearance
*  Computational burden relative to the base model: low: 1–4-fold increase in run times; moderate: 4–8-fold increase in run times; high: > 8-fold 
increase in run times

Model Type Covariate 
Relationship with 
TVCL

Time-variant 
Relationship

Estimated Increase 
in CL (%) for 
ADA+ 

TVCL (L/h) CL ADA−/CL 
ADA+ (L/h)

Data Set 
Modification

Compu-
tational 
Burden*

PPK without IOV in CL
None NA NA 0.0285 0.0283/0.0332 None –
Separate TVCL No NA 0.0279/0.335 0.0282/0.0339 None Low
ADAEVER No 19.0 0.0279 0.0282/0.0339 None Low
ADAONCE Yes 10.6 0.0283 0.0282/0.0344 None Low
ADALOCF Yes 8.5 0.0285 0.0293/0.0314 None Low
ADALOCF Yes

PPK with IOV in CL
None NA NA 0.0285 0.0289/0.0342 None High
ADAEVER No 19.9 0.0285 0.0280/0.0335 None High

Joint ADA/PK model
Mono-directional Probability of ADA+  Yes 14.9 0.0285 fix 0.0261/0.0317 Substantial High
Bi-directional Probability of ADA+  Yes 11.6 0.0285 fix 0.0258/0.0313 Substantial High
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Markov models for ADA status

The structures of the population ADA models are provided 
in Fig.  2 (DTMM), Fig.  3 (CTMM), and Fig.  4 (joint 
PK-CTMM). In the DTMM, the probability of ADA+ or 
ADA− status was obtained by estimating the transition 
probability from ADA status at the current occasion, 
irrespective of the time since the previous occasion. For 
the CTMM, the time between occasions was considered to 
obtain the probability of ADA+ or ADA− status because the 
influence of the previous ADA status on the probability of 
the current ADA status typically decreases with increasing 
time between occasions.

The DTMM estimated the probability of baseline 
ADA+ status as 2.12% (Table 3). The probability of a transi-
tion from ADA− to ADA+ (p01 ) status was 0.7%. The prob-
ability of a person transitioning from ADA+ to ADA− status 
( p10 ) was 25.4%. The relationship between tumor type and 
p01 was the only significant covariate relationship in the 
model. The estimate of p01 was 0.73% for NSCLC (the most 
common tumor type), 1.8% for GC/GEJC, 0.36% for UC, 
0.35% for MCC, and 0% for other solid tumors (including 
lung, gastrointestinal tract, skin, breast, head and neck can-
cers). The tumor type relationship with p01 in the final SCM 
model was simplified by removing the relationships between 
tumor types on p01 that were not statistically significant one 
by one. The relationship between GC/GEJC and p01 was the 
only statistically significant relationship (see Table 3). VPCs 
confirmed the predictive characteristics of DTMM across 

tumor types. The VPCs for GC/GEJC tumors are shown in 
Fig. 5.

The DTMM-predicted time course for ADA+ sta-
tus ( p1 ) was evaluated as a time-varying ADA covari-
ate in the population PK model. This enabled a gradual 
change to maximal probability when switching from 
ADA− to ADA+ status instead of an abrupt step change 
as was the case with the ADAONCE (“Not yet ADA+ ” 
or “ADA+ and thereafter”) approach (see Fig. 6). The 
increase in avelumab CL attributable to a transition from 
ADA− to ADA+ was 41% (90% PI 17%, 52%) in patients 
with GC/GEJC, 18% (90% PI 18%, 26%) with NSCLC, 
11% (90% PI 7%, 12%) with MCC, and 11% (90% PI 
7%, 13%) with UC (examples of individual patients are 
provided in Fig. 6). However, this model did not address 
the immortal time bias associated with step change from 
ADA− to ADA+ . Although this approach differentiates 
the effect of ADA+ status on CL between individuals (dif-
ferent maximum probabilities), once an individual’s maxi-
mum probability is attained, the value remains constant. 
This approach may be considered a sequential ADA-PK 
rather than a joint model to link PK and ADA models.

The CTMM estimated the rate of change in ADA status 
(parameter estimates for the important models are pro-
vided in Table 4). The final CTMM included the effects 
of baseline ADA status and tumor type on the rate con-
stant for changing from ADA− to ADA+ (�01 ). This rate 
constant was 3.8-fold higher when patients were ADA+ at 
baseline. Compared to NSCLC, �01 was 17% higher in 
patients with GC/GEJC, 37% lower with UC, 38% lower 

Table 3   NONMEM parameter estimates for the discrete-time Markov models

OFV objective function value, ΔOFV change in OFV from baseline model, P1 probability of ADA+, P01 probability to transition from ADA− 
to ADA+ , P10 probability to transition from ADA+ to ADA−, %RSE relative standard error (percentage), SCM stepwise covariate model
* Indicates fixed parameters

Parameter Base Model Final SCM model Reduced 
Covariate Model

DTMM model %RSE %RSE %RSE
OFV 2517.934 2479.973 2485.735
ΔOFV 0 − 37.961 − 32.199
Typical value for P1 at baseline (logit scale) − 3.83 1.3% − 3.83 1.6% − 3.83 1.1%
Typical value for P01 (logit scale) − 4.93 4.2% − 4.91 4.5% − 5.05 4.5%
Typical value for P10 (logit scale) − 1.08 6.2% − 1.08 9.7% − 1.08 5.2%
Change in P01 relative to NSCLC
 GC/GEJC − 0.191 22.4% − 0.215 17.1%
 UC 0.142 68%
 MCC 0.157 67.5%
 Other solid tumors 0.971 71.9%
 IIV on P1 baseline, % 7.1%* 7.1%* 7.1%*
 IIV on P01, % 186.6% 15.7% 132.1% 31.8% 129.1% 27.9%
 IIV on P10, % 7.1%* 7.1%* 7.1%*
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with MCC, and 99% lower with other solid tumors (there 
were no ADA+ patients in the model development data 
set). The model under-predicted the time-course of the 
probability of ADA status for the patients with NSCLC 
in the later part of study JAVELIN Lung 100. The final 
CTMM included the same covariate relationships as in the 

final DTMM: baseline ADA status and tumor type on �01 . 
The VPCs for the final model are shown in Fig. 7.

Fig. 5   Visual predictive check for the population discrete-time 
Markov model. Top panel: all tumor types. Bottom panel: GC/
GEJC tumors (in JAVELIN Gastric 100). The open circles show the 

observed fractions versus time and the shaded area shows the corre-
sponding model-based 95% confidence interval
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Joint PK‑ADA models

The parameter estimates for the important models are pro-
vided in Table 5. The time-course of p1 compared to other 
ADA categorizations for several randomly selected patients 
is shown in Fig. 8.

The relationship between p1 and CL was estimated, and 
the maximum increase in clearance was 11.6% and 15.0% 
for the mono- and bi-directional joint PK-ADA models for 
the linear model and 21.7% for the nonlinear model, respec-
tively. With respect to the relationship between avelumab 
exposure and �01 , maximum decrease in �01 was 37% with 

Fig. 6   Demonstration of the time-course of probability of ADA+ and 
the time-invariant (ADAEVER) and time-variant (ADAONCE, 
ADALOCF) categorization of the ADA data for five random patients 
who were ADA+ at least once. The open circles show the actual ADA 
values. The red lines show the values for ADAEVER, the green lines 

are ADAONCE, and the purple lines are ADALOCF. The light blue 
line is MCC, gray lines are NSCLC, and the yellow line is GC/GEJC. 
p(ADA+) is the individual probability of ADA+ from the discrete 
time Markov model
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50% of the maximum decrease estimated to occur at a con-
centration of 349 μg/mL. This estimate is markedly higher 
than the maximum avelumab concentration for adults for 
the clinical dose 800 mg q2w (geometric mean 256.3 µg/
mL [24]). The relationship curve was relatively steep with 
γ of 2.58.

The portion of the data set not used in the model 
development was reserved for external validation. VPCs 
were performed with the parameter estimates from the 
model development data set. The VPCs confirmed that the 
PK models with ADA status as a time-varying covariate, 
the final DTMM, and final CTMM were all able to predict 
the new data with acceptable accuracy and confirmed the 
predictive ability of the models.

Discussion

Joint models refer to models that simultaneously analyze 
different types of outcomes or variables [25]. Bi-directional 
joint models are models that consider interactions of 
relationships in both directions between the outcomes or 
variables. Broadly speaking, joint modeling is the estimation 
of two or more statistical submodels into a single joint 
model. Such models provide more efficient estimates of the 
effects and can reduce bias in the estimates of the overall 
effect [26].

We developed a joint model to describe the bi-directional 
effects of the probability of ADA+ status (a CTMM) on the 
CL of avelumab (a two-compartment disposition PK model 
with time-varying clearance) and the effect of the avelumab 

concentrations on the rate of ADA− to ADA+ transition. In 
this analysis both the PK and ADA models were described 
using ODEs, which facilitated combining the ADA and PK 
models. The ADA and PK models were linked by estimating 
the correlation in the random effects (inter-individual vari-
ability) in clearance (CL) and transition rate constant ( �01 ) 
and by separate link functions for the effect of ADA+ on 
CL (a sigmoidal Emax model) and the effect of the amount 
of avelumab in the central compartment on �01 . Insufficient 
data were available to assess the impact of neutralizing 
antibodies.

Joint models are computationally intensive. A stepwise 
approach was used, starting with the development of 
separate PK and ADA models, with the models with shorter 
runtimes explored first (population PK model without IOV, 
and DTMM of ADA) before developing the models that 
required longer (the CTMM for ADA, and the joint CTMM 
ADA-PK model). Both the PK and ADA CTMM were 
modeled using sets of ODEs, resulting in long runtimes, 
but this made subsequent combination of the models more 
straightforward (see Fig. 4).

Effect of ADA on avelumab CL was previously estimated 
(using ADAEVER) as 12.3% (95% CI 7%, 18%) in a full 
covariate model [11]. For the current analysis, the model 
was reduced to the base model with bodyweight as the 
only maintained covariate. With the reduced model the 
ADA effect on clearance ranged from 8.5% (ADALOCF) to 
19.9% (ADAEVER with IOV in CL). The estimates of IIV 
on clearance or the estimates of the parameters describing 
the time-varying component of clearance did not appear to 
be influenced by different ADA categorizations.

Table 4   NONMEM parameter estimates continuous-time Markov model

OFV objective function value, ΔOFV change in OFV from baseline model, �01 transit rate constant ADA− to ADA+ , �10 transit rate constant 
ADA+ to ADA−, %RSE relative standard error (percentage)
* Indicates fixed parameters

Parameter

CTMM Model Base Model %RSE Baseline ADA+ on �01 %RSE Final Model %RSE

OFV 5452566.033 5452534.992 5452478.918
ΔOFV 0 − 31.041 − 87.115
Typical value for �01 , /h 0.00461 18.10% 0.00446 18.10% 0.00404 20.50%
Typical value for �10 , /h 0.139 17.60% 0.142 17.80% 0.146 17.70%
Baseline ADA+ : change in �01 4.84 40.50% 4.38 42.20%
Change in �01 relative to NSCLC
 GC/GEJC 1.17 30%
 UC − 0.404 48%
 MCC − 0.373 88.50%
 Other solid tumors − 0.99*

IIV on �01 , % 0%* 0%* 0%*
IIV on K21, % 0%* 0%* 0%*
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Modeling immunogenicity has been approached in a 
number of ways in the literature, most commonly by incor-
porating as a binary variable on CL in the covariate sub-
model [27, 28]. Several alternative approaches have been 
proposed at scientific meetings, but few have been published 
in peer-reviewed form to date. One suggested approach, 
which addressed interspecies scaling of a recombinant com-
plement factor I, used a mixture model with two populations 
representing the presence and absence of ADA-dependent 

clearance in non-human primates, and included estimation 
of an ADA-dependent CL and an additional CL parameter 
along with the time of its onset to account for the potential 
effects of ADA in humans [29]. A more complex approach 
proposed by Niebecker et al. comprised modeling immune 
response (time of seroconversion) using an ADA surro-
gate [28]. In another approach, a semi-mechanistic PK/
PD model was developed to characterize the dynamics of 
ADA in cancer patients receiving the V937 oncolytic virus 

Fig. 7   Visual predictive check 
for the final continuous-time 
Markov model for GC/GEJC, 
UC, NSCLC, and MCC. The 
open circles show the observed 
fractions versus time and the 
shaded area shows the cor-
responding model-based 95% 
confidence interval
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in monotherapy or in combination with pembrolizumab, 
whereby the time course of ADA was modeled using the 
population-pharmacokinetic parameter-and data (PPP&D) 
approach [30], in which population PK parameters are 

fixed, but individual PK parameters are estimated simulta-
neously with the ADA model based on both PK and ADA 
data [31]. Time to event models have also been employed 
to describe the time to appearance of ADA [27]. Therein, 

Table 5   NONMEM parameter estimates joint PK and ADA models

CL clearance, C1 avelumab concentration in central compartment, OFV objective function value, ΔOFV change in OFV from baseline model, 
�01 transit rate constant ADA− to ADA+, �10 transit rate constant ADA+ to ADA−, �P1 shape of the effect curve for ADA on CL; �C1 : shape of 
the effect curve for exposure on ADA
* Indicates fixed parameters

Parameter

Joint Model Base Model Correlation CL, C1, �01 ADA on CL ADA on CL + C1 on ADA ADA on CL 
(Emax) + C1 
on ADA

OFV 20230779.285 20230699.696 20230703.331 20230659.164 20230709.255
ΔOFV 0 − 79.589 − 75.954 − 120.121 − 70.03
Avelumab population PK model
 Clearance (CL), L/h 0.0272* 0.028 0.0272* 0.0275 0.0272*
 Central volume (V1), L 3.52* 3.52* 3.52* 3.52* 3.52*
 Peripheral volume, L 0.582* 0.582* 0.582* 0.582* 0.582*
 Intercompartmental clearance, L/h 0.0128* 0.0128* 0.0128* 0.0128* 0.0128*
 Imax − 0.015* − 0.015* − 0.015* − 0.015* − 0.015*
 T50, days 51.9* 51.9* 51.9* 51.9* 51.9*
 γ 2.59* 2.59* 2.59* 2.59* 2.59*

Continuous Markov model
 Rate constant ADA− to ADA+ (�01 ), 

/h
0.00404* 0.00404 0.00404* 0.00406 0.00404*

 Rate constant ADA+ to ADA− ( �10 ), 
/h

0.146* 0.146* 0.146* 0.146* 0.146*

  Change in �01 relative to NSCLC
   GC/GEJC 1.17* 1.17* 1.17* 1.17* 1.17*
   UC − 0.404* − 0.404* − 0.404* − 0.404* − 0.404*
   MCC − 0.373* − 0.373* − 0.373* − 0.373* − 0.373*
   Other solid tumors − 0.99* − 0.99* − 0.99* − 0.99* − 0.99*

 Baseline ADA+ : change in K34 4.38* 4.38* 4.38* 4.38* 4.38*
 Effect of ADA on CL
 Slope of ADA effect on CL 0.116 0.15
   Maximum change 0.217
   50% of maximum change 0.446
   Shape of effect curve 1

 Effect of exposure on ADA
   Maximum change − 0.374 − 0.405
   50% of maximum change 349 387
   Shape of effect curve 2.58 2.75

IIV on CL, % 38.5% 40.1% 38.5% 39.9% 46.1%
IIV on V1, % 23.4% 25.7% 23.4% 24.6% 24.8%
IIV on �01 , % 218.1% 226.1% 218.1% 329% 414.4%
IIV on �10 , % 0%* 0% 0%* 0% 0%
IIV on TMAX, % 21.8%* 21.8%* 21.8%* 21.8%* 21.8%*
Proportional residual error PK (σprop), % 21.1%* 21.1%* 21.1%* 21.1%* 21.1%*
Additive residual error PK (σadd), ng/mL 2378.6* 2378.6* 2378.6* 2378.6* 2378.6*
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ADA formation, which mainly took place within 3 months 
of starting the treatment, was predicted to be lower with 
higher trough concentrations, which could be achieved with 
the use of higher doses and/or increased dosing frequency 
(e.g. loading doses) [32].

In immuno-oncology settings, during treatment with 
immune checkpoint inhibitors including avelumab, time-var-
iance in CL, attributed to changes in disease status, has been 

observed [11, 32, 33]. Consequently, exposure–response 
analyses using baseline exposure metrics have been found 
to be more consistent with the true exposure/dose–response 
relationship. The use of time-invariant ADA (ADAEVER) 
as a binary covariate may affect the estimate of baseline CL 
and derived exposure metrics that may mask or confound the 
true exposure–response relationship. Additionally, due to the 
fact that the ADAEVER approach conservatively treats all 

Fig. 8   Demonstration of the time-course of probability of 
ADA+ [p(ADA+)] and the time-invariant (ADAEVER) and time-
variant (ADAONCE, ADALOCF) categorization of the ADA data 
for five random patients who were ADA+ at least once. The open 

circles show the actual ADA values. The lines show the values for 
ADAEVER, the solid green lines are ADAONCE, and the purple dot-
ted lines are ADALOCF. The light blue line is MCC, gray lines are 
NSCLC, and the yellow line is GC/GEJC
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time points during treatment as being ADA+, bias is intro-
duced in estimation of the effect of immunogenicity on CL, 
questioning the accuracy of estimates of ADA effect on PK. 
The estimated time to reach 50% of the maximum change 
in CL was consistent for all ADA covariate models (around 
12 months after starting treatment). During this period the 
DTMM demonstrated that the probability of remaining 
ADA− decreased rapidly (Fig. 5), again demonstrating the 
importance of unbiased estimates of baseline CL for expo-
sure–response analyses. The estimation of IOV in a large 
data set with a long period of observation is cumbersome 
and drastically increases the computational burden (Table 2), 
as well as introducing significant additional complexity 
when using models for simulation. Assessment of IOV 
should be performed early during the development program 
to ensure that the clinical importance of the observed het-
erogeneity in the mechanisms and outcomes is understood 
prior to analyzing data from pooled studies or studies with 
long duration. In this analysis, the IOV over the first 12 visits 
was investigated, due to the large number of visits in study 
JAVELIN Lung 100. The first 12 visits covered a period of 
ca. 3 years (168 weeks, range 148 to 198 weeks) and pro-
vided adequate coverage of the observed ADA transitions. 
The addition of IOV in CL did not change the estimate of 
the ADA effect on CL: across the models the increase in CL 
due to ADA using a time-invariant covariant was 20%. The 
estimate of IOV in CL was 4% across all models and thus 
negligible compared to the estimate of IIV in CL of 34%. 
Thus, IOV was not incorporated in the final joint PK-ADA 
models.

Markov models have previously been used to analyze 
ADA dynamics. Hidden Markov (HM) models were 
developed for satralizumab, a humanized IgG2 monoclonal 
recycling IL-6 receptor antagonist for treatment of 
neuromyelitis [34], and certolizumab pegol, a PEGylated 
Fc-free TNF inhibitor for treatment of chronic inflammatory 
diseases [35]. A HM model is a class of probabilistic models 
that connect observable variables (e.g. ADA+ or ADA−) 
to hidden underlying states (immunological response) 
where the next state depends on the previous state [34]. 
The probabilities of the observed ADA-state to the hidden 
immunological state were modeled as continuous random 
variables that could be correlated through a bivariate 
Gaussian probability density function [35]. The HM ADA 
models assumed that all patients started in a state of no ADA 
production, and only the probabilities of transition were 
estimated. The stationary probabilities (ADA− transition 
to ADA−, and ADA+ transition to ADA+) were not 
estimated. The HM model for certolizumab pegol suggested 
that ADA are formed earlier than assays can detect. In the 
analysis of ADA data for avelumab, DTMM estimated that 
2.2% of patients were positive at baseline, and baseline 
ADA+ status was a covariate in the DTMM and CTMM Ta
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models. Although this estimate is in agreement with the 
incidence of positive baseline ADAs in clinical trials (range 
1% to 20%) [36], the covariate was estimated with high 
uncertainty in the CTMM, indicating that caution is needed 
when interpreting transition rates in patients with positive 
baseline ADA measurements. As estimating the stationary 
probability (ADA+ transition to ADA+) was required, the 
HM model as implemented for certolizumab pegol was not 
considered appropriate for the current analysis.

In the DTMM, the probability of a transition from 
ADA− to ADA+ (p01 ) status was 0.7% whereas the 
probability of a patient transitioning from ADA+ to 
ADA− status ( p10 ) was 25.4%. This difference may reflect 
the natural decline in antibody levels due to a diminished 
immune response or immune tolerance, treatment 
interventions (such as immunosuppressive therapies), or 
variability in sensitivity and specificity in assays used to 
detect ADA [37].

The bidirectional joint PK-ADA model we developed for 
avelumab suggested that higher avelumab concentrations 
resulted in a decrease in transition rate to the ADA+ state. 
This finding is in line with the previous analyses [30, 
38], including application of HM models, which have 
indeed proposed that increased drug exposure reduces 
immunogenicity, although such findings in oncology are 
somewhat conflicting [38]. Differences in ADA rates among 
tumor types have previously been reported for another 
immune checkpoint inhibitor, pembrolizumab, although the 
ADA incidence was overall low [39]. In addition, there was 
high uncertainty in the estimates of the differences between 
tumor types (%RSE > 30%), indicating that the data set did 
not contain adequate information and should be interpreted 
with caution. A pooled analysis of 12 atezolizumab clinical 
trials did not identify meaningful differences in ADA 
incidence between tumor types [40].

We have proposed considerations and utility of the 
population PK, ADA, and joint PK-ADA models (Table 6). 
There is a fine balance between the information gained 
and resources required to do so. All three approaches 
were successful in providing quantitative insight into the 
relationship between avelumab exposure and ADA formation. 
Accounting for the phase of development, data available, and 
clinical need to understand the relationship between ADA 
dynamics and drug exposure, efficacy and/or safety can help 
guide the choice of the type of analysis most appropriate.

Conclusions

This analysis investigated approaches to quantitatively 
account for immunogenicity in an immuno-oncology setting 
for an immune checkpoint inhibitory monoclonal antibody. 
The approaches included ADA as a covariate in a population 

PK model and Markov models of ADA status (ADA+ or 
ADA−). The final joint PK-ADA model incorporated 
bidirectional effects of ADA status on avelumab clearance 
and avelumab exposure on ADA status. None of the 
investigated covariates other than baseline ADA status 
and tumor type were of relevance for assessing avelumab 
immunogenicity. The joint PK-ADA model estimated a 
lower rate of change from ADA− to ADA+ status with 
higher avelumab concentrations. Viewed from a broader 
perspective, the analyses presented here illustrate a roadmap 
for approaching quantitative characterization of the inter-
relationships of dynamics of PK and ADA for quantitative 
clinical pharmacology characterization of biologics.
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