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Abstract

The aim of the analysis was to develop a phenomenological longitudinal population pharmacokinetics (PK)-anti-drug
antibodies (ADA) model to enable an informed and quantitative framework for assessment of ADA influence. Data used
were from seven clinical studies of avelumab across drug development phases in patients with several tumor types. ADA
as covariate in a population PK model, and Markov models of ADA status (ADA+ or ADA—) were investigated. Finally, a
joint PK-ADA model was developed. In the population PK models that evaluated ADA as a covariate, the clearance increase
attributable to ADA+ status was 8.5% (time-varying ADA) to 19.9% (time-invariant ADA with inter-occasion variability
in clearance). With a discrete-time Markov model (DTMM), tumor type was identified as a significant covariate on the
probability of ADA— to ADA+ transition. When ADA time course predicted by the DTMM model was implemented as a
covariate in the population PK model, an increase in avelumab clearance of 11-41% was estimated depending on tumor
type. With a continuous-time Markov model (CTMM), in addition to tumor type, baseline ADA status was identified to
significantly influence the ADA— to ADA+ transition rate constant. The joint PK-CTMM model estimated the maximal
increase in CL due to ADA as 15% and a decrease in ADA— to ADA+ transition rate of up to 37% with increasing avelumab
concentration, with 50% of the maximum decrease occurring at 349 pug/mL. The present work established a framework for
the assessment of interactions between PK and immunogenicity for therapeutic proteins.
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Graphical Abstract

Modeling strategy for the development of the PK, ADA and joint PK-ADA models
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ADA = anti-drug antibody; ¢, = plasma concentration associated with central compartment; ¢, = plasma concentration
associated with peripheral compartment; 1,; = rate to transition from ADA- to ADA+ status; 1,, = rate to transition
from ADA+ to ADA- status; p, = probability of ADA- status; p, = probability of ADA+ status; p,; = probability to
transition from ADA+ to ADA- status; py,; = probability to transition from ADA- to ADA+ status; V; = volume of
distribution of the central compartment; V, = volume of distribution of the peripheral compartment.

Keywords Therapeutic proteins - Immunogenicity/anti-drug antibodies - Bidirectional model - Avelumab

Introduction

Immunogenicity, the development of anti-drug antibodies
(ADA), is an important characteristic of therapeutic proteins,
affecting pharmacokinetics (PK) and pharmacodynamics
(PD), including drug efficacy and safety [1, 2].
Immunogenicity is an inherent characteristic of therapeutic
proteins, resulting from natural immune processes, but
ADA development can also be influenced by intrinsic and
extrinsic factors such as the underlying disease and its status,
or comedication with immune system-altering drugs, such as
corticosteroids, immunomodulators, or chemotherapy [3, 4].

Mechanistically, all ADA form immune complexes
with drug molecules which are subsequently eliminated,
thereby increasing the clearance of the drug to varying
extents. At the same time, ADA (especially neutralizing
ADA, which bind to target-binding sites on the drug
molecule) can inhibit drug molecules binding to their
targets, thus potentially negating the pharmacological
activity of the drug, in addition to lowering its exposure
owing to increased clearance (CL). ADA-drug immune
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complexes can also cause anaphylactic/hypersensitivity
reactions. For cancer immunotherapies, it has been
proposed that development of ADA might be a surrogate
marker of immune system activation and therefore drug
efficacy [2].

Due to the complexity inherent in ADA (different IgG
classes, only semi-quantitative analytical methods, and
an array of other complications), the kinetics of ADA
development are difficult to characterize [5]. The effects
of ADA on PK, efficacy, and safety of drugs are often
investigated by classifying patients as ADA+ (developed
ADA at any point during the trial) or ADA— (never
developed ADA during the trial) in a time-constant
manner. This way, valuable information is lost, whereas
modeling ADA structurally and in a time-varying manner
would reduce this information loss by enabling the use
of ADA information over time. Furthermore, assigning
ADA status on patient level (ADA ever/never) is
pharmacologically not appropriate for describing causal
relationships and additionally introduces immortal-time
bias [6], as this non-baseline variable is treated as known
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at baseline, thereby confounding the results of such
analyses. The fact that ADA are commonly reported as
titers, not absolute concentrations, further complicates
analysis in a quantitative mechanistic manner. Finally,
simulations with ADA are typically not feasible in the
absence of a model describing their development.

Published population models that account for ADA
usually include overall ADA status (ever/never or, less
frequently, ADA as a time-varying covariate) as a covariate
on CL or volume of distribution (V), not as a part of a
structural model [7]. Further, many approaches are limited
to accounting only for patients who develop ADA and are
not suitable for describing ADA— patients. While limitations
inherent to the observed ADA data (such as having only
titers available) cannot be fully circumvented, a longitudinal
PK-ADA model would theoretically enable an informed and
less biased framework for assessment of ADA influence.

Avelumab is a human immunoglobulin G1 (IgG1) anti-
programmed death ligand 1 (PD-L1) monoclonal antibody
[8] with a wild-type fragment crystallizable (Fc) region,
indicated as monotherapy for the treatment of adult patients
with metastatic Merkel cell carcinoma (MCC), first-
line maintenance treatment of adult patients with locally
advanced or metastatic urothelial carcinoma (UC) who are
progression-free following platinum-based chemotherapy,
and in combination with axitinib for first-line treatment of
adult patients with advanced renal cell carcinoma (RCC) [9].

The overall aim of this investigation was to develop a
bidirectional joint PK-ADA model on an immuno-oncology
data set to establish a framework for assessing the impact of
immunogenicity on drug PK. As the first step, within this
project, two alternative approaches to account for ADA
were investigated: (1) ADA as a time-varying covariate in
a population PK model, and (2) a Markov model of ADA
status linked to a population PK model. Markov models are
mathematical models that describe systems which transition
from one state to another, with the probability of each
transition depending only on the current state and not on
the previous states [10].

Apart from the interaction between systemic drug
concentrations and ADA status, the ADA status analysis
included investigating covariate effects on ADA status
transitions. Potential effects of tumor type were also
investigated within the covariate analysis.

Methods
Data
The analysis was performed using pooled data of patients

treated with avelumab across drug development phases with
different oncology indications from multiple clinical trials.

An overview of the analyzed patient population is given in
Table 1. Data from 1892 patients with evaluable PK data
were used in the analysis and were split into two subsets
stratified by ADA incidence (ever vs never ADA+): a subset
for model development (1513 patients, ~80% of data) and a
validation subset (379 patients, ~20% of data). Previously,
a population PK model developed on data from 3 of the 7
clinical trials was published [11].

Avelumab concentrations were quantified using an
immunoassay sandwich method (interrun coefficient of
variation [CV]<16.1%, bias [absolute value] <15.5%, total
interrun error < 19.1%). The lower limit of quantification
was 0.2 pg/mL [11]. ADA testing was conducted using a
tiered assay approach, whereby samples that were screened
and confirmed positive for ADA were subsequently analyzed
to determine the titer using the homogeneous bridging
electro chemiluminescent immuno-assay [12]. The following
numbers of data points/participants were used for the model
development and evaluation: PK development, 12,707/1513;
PK evaluation, 3362/377; CTMM development, 14,874
/1495; CTMM evaluation, 3925/375; DTMM development,
14,247/1513; and DTMM evaluation, 3766/378. The
average number of ADA samples and collection times are
provided in Table 1. Missing ADA data were ignored in the
analyses. There was no minimum ADA data requirement for
a patient to be considered evaluable. Only 7 patients with
neutralizing antibody were reported, and for 76 data points,
the neutralizing antibody information was missing.

Avelumab population PK model

A previously-developed population PK model for avelumab
formed the basis for PK-ADA model development [11]. This
model was 2-compartmental, with time-dependent clearance
(CL; Fig. 4). Decrease in CL was modeled as a sigmoid
maximal inhibitory response process [13]:

Imaxi : t%/
CL,, =TVCL - ex ~ L) -ex ~
It p( T;lo + ll}./ ) p(”lCL,;)

Here, CL;, is CL in individual i at time ¢, TVCL is the
typical value of CL in the population, /,,,, ; is the maximal
possible change in CL relative to baseline for individual i,
t, 1s the time after first dose in individual i, Ts; is the time at
which 50% of 1,,,, is reached, y describes the shape of the
relationship, and 7 ; is interindividual variability (IIV) in
CL for individual i, defined as being normally distributed
with a mean of 0 and variance of a%L. In addition to CL,
IV was included on central volume of distribution (V1)
and I, (additively for the latter). The residual error was
described by a combined additive and proportional error

model. For the current analysis all covariate effects were
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removed except body weight as a covariate on CL and V1
using standard allometry coefficients [14].

Joint PK-ADA model

Two approaches to model ADA data were investigated: (1)
ADA as a covariate in the population PK model, and (2)
Markov models of ADA status. Finally, a PK-ADA model
linked the Markov model for ADA status to the population
PK model to assess the bidirectional effect of ADA status
on PK and drug exposure on ADA status simultaneously.
The modeling strategy started with model development for
models with lower complexity/computational burden and
progressed to models with higher complexity/computa-
tional burden. ADA status was evaluated for effect on ave-
lumab PK as a categorical covariate on avelumab clearance
using different categorizations of ADA status: ADAEVER
(time-invariant, ever vs never ADA+), ADAONCE (time-
varying, ADA+ at first appearance of ADA and thereafter),
and ADALOCEF (time-varying, ADA+vs ADA—) as graphi-
cally demonstrated in Fig. 1.
The ADA part of the joint model was considered be
Markovian in nature, since it is likely to depend on state
transitions over time: ADA— to ADA+, and back again,

based on the previous state, and on time. ADA status was
modeled using two-state discrete-time (DTMM) and two-
state continuous-time (CTMM) Markov models. The Markov
ADA-models were evaluated using VPCs for both the
probability of ADA status as well as the probability to change
ADA state or to remain in the same ADA state. Covariate
relationships identified for the DTMM were included in the
CTMM. The joint PK-ADA model was constructed by linking
the population PK model to the CTMM to assess the effects
of ADA on avelumab clearance and the effect of avelumab
exposure on ADA status.

Discrete-time Markov models

Discrete-time Markov models (DTMMs) assume time to be a
discrete variable, the recorded observation times in a clinical
study. DTMM equations describe the transition probability
from state k;_, to state k;, or more simply, the probability of
each state k; at the current occasion j given that state k;_; was
observed at the previous occasion j—1 [15].

The DTMM (Fig. 2) may be summarized as follows:

Py =P, = 11Y;;, =0)

Fig.1 Categories of time-vari-
ant ADA, using a representative
patient
ADAEVER ADAONCE
ADA+ o= — e — oo e — ente— et e ©
| .
» f
) / p
= | ADALOCF
© f L
> J
> [
© f .
o f .
8 f :
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Fig. 2 Structure of the discrete-
time Markov model. p, :
probability to transition from
ADA+to ADA—; p,: probabil-
ity to transition from ADA— to
ADA+

Baseline: 1 —p,

Py = P(Y;; = 0lY,

Py =PY,;=0lY;;.; =1

P =P, =1Y, =) =1=Py,;

-

Here, Py, is the probability of a transition from
ADA-— (state 0) to ADA+ (state 1) in individual i at
observation occasion j, P is the probability of a transition
from ADA+to ADA- in individual i at observation
occasion j, Py ;; is the probability that ADA remains
negative in individual i at observation occasion j, and Py ; ;
is the probability that ADA remains positive in individual i
at observation occasion j. Y, ; is the observed value of ADA
(+or —) in individual i at observation occasion j, while ¥;;_;
is the observed value of ADA (+or —) in individual i at
preceding observation occasion j—1.

The probabilities were estimated using a logit
transformation:

1

(et}

Here, Py, ; is the individual realization of patient i’s
probability to transition from ADA— to ADA+ where TVP,
is the typical value of the probability in the population, and
np,, s the IIV defined as being normally distributed with a
mean of 0 and variance of wf,m.

POl,i =

Continuous-time Markov models

The continuous-time Markov model (CTMM) is more
appropriate for non-uniform observation times, although
for two-state data, the DTMM and CTMM methods may
produce similar results for naturally discretized data (e.g.
prespecified time points based on clinical trial designs)
[10]. In this method, the influence of the previous state on

@ Springer

1—pio

Po1 = logit~* (6, +ny)

Pio = logit”l (65)

P = logit‘l(Gl)

the probability of the current state typically decreases with
increasing time between observations [16—18].

Ao+ Agri - e~ (hoito1)-At;

Aori + Ao,

Poo,i,j =
Po1,i,;' =1- POO,iJ

~(Aao+A01:) Aty
}”01,1'+ ,110’1,.@ (Z10,+01) J

Aori + Ao,

Pll,i,/' =

Plo,i,j =1 _Pll,i,j

Here, 4, ; is the transfer rate constant from state 0 to
state 1 in individual i, 4, is the transfer rate constant
from state 1 to state O in individual i, and Ati’]- is the time
difference between the current and previous observations in
individual i at observation occasion j. Other parameters are
as previously defined. Treatment and covariate effects can
be applied to Ay, and A,

101 - 6(10991 +11)

110 = e(l0ogb+n;)

54,
e —Ao1*Ap + 10" 4y
54,

5 o1+ Ag — A1 A4

Fig.3 Structure of the continuous-time Markov model (CTMM). 4,,:
rate constant for ADA+to ADA— transition; Ay: rate constant for
ADA - to ADA+transition; Al: probability for ADA+; AO: probabil-
ity for ADA—
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In the current case, the CTMM was implemented as ordi-
nary differential equations (ODEs) representing the prob-
abilities of ADA being negative or positive (Fig. 3):

dA,
o —Ao1 Ao + Ao Ay
dA,

ar Aot = Ag = Aig - Ay

Ajand A, represent the probabilities of ADA being negative
and positive, respectively. Using this approach, modifications
to the data file were necessary to facilitate analysis with
NONMEM (version 7.4.3) [19]; compartment amounts
and associated bioavailability values were reset after each
observation [18]. Aside from ADA status itself, covariates
on ADA state transition probabilities were considered,
particularly tumor type. The transition rates were estimated
using a log transformation:

dot = exp(ZOKTVAM 01
i

Time,ss

Fig.4 Structure of the bidirectional joint PK-ADA model. CL:
clearance; Q: intercompartmental clearance; V1: central volume of
distribution; V2: peripheral volume of distribution; P1,: effect of
probability of ADA+on CL; Cl,,: effect of concentration in cen-
tral compartment on probability of ADA+; Time,;: effect of time
on CL; I,,.: maximum change in CL relative to baseline; T,: time
for half of maximum effect; y : shape of time effect curve; E,,, .
maximum change in effect of exposure on rate of transition from

Here, Ay ; is the individual realization of patient i’s transi-
tion rate from ADA— to ADA+where TV, is the typical value
of the transition rate in the population and #, is the IIV
defined as being normally distributed with a mean of 0 and
variance of a)im.However, the data did not support the
estimation of IV in Ay, or 4.

The joint PK-ADA model combined the base population
PK model (without ADA effect or IOV) with the final
CTMM (including covariates). The models were linked by (1)
estimating the correlation between avelumab clearance and
Agp» (2) effect of probability of ADA+status (p1) on clearance
(mono-directional joint PK-ADA model), and (3) time-course
of the effect of avelumab exposure on the A,; and the effect
of p1on clearance (bi-directional joint PK-ADA model). The
typical values of avelumab clearance, 4, and the associated
IIV parameters were estimated. All other parameters were
fixed to the final typical values of the estimates of the base
population PK model and the final CTMM.

The bi-directional effects are demonstrated in Fig. 4. The
effect of plon avelumab CL (P1,; ;) was modeled as a linear

)‘10 — 3(10992'*"]2)

101 =e ClerplogBi

expTimeeff - exp

>
>

Yp1
Emax pl,° t,'

£ =1+ —m8M8
Yp1 Yp1
EPlSO +t;
lm;}x'—lt}f c1 =1+ Emax _c1"t,-y”
=
Tso +t; off ECgg+t; !

ADA~- to ADA+; ECs: concentration for half of maximum expo-
sure effect; y.,: shape of exposure effect curve; E , ,;: maximum
change in CL due to ADA; EP1,: probability of ADA+for half of
maximum ADA effect; Vpi: shape of the ADA effect curve; 4, : rate
constant for ADA+to ADA— transition; A,;: rate constant for ADA—
to ADA+transition; pl: probability for ADA+; p0O: probability for

ADA-
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or as a non-linear relationship between p1 (independent vari-
able) and CL (dependent variable):

CL; )
Ti .
ko = V_li <Pl - e ic)

Pl,y;=1+sl-pl; (linear model)

. pl}’lfl
m—};”l(non—linear model)
EPgy +pli;

max_P1

Ply, =1+

Here, ky,;, CL;, and V1, are the avelumab elimination
rate constant from the central compartment, avelumab CL,
and central volume of distribution, respectively, for patient
i. In the linear model the intercept is set to 1 (no change)
and s/ is the slope of change in pl. The nonlinear model
is a sigmoidal Emax model, and E,,, p; and EPs, are the
maximum effect and 50% of the maximum effect of p1on
clearance. y“P! describes the shape of the relationship.

The link model for the relationship between exposure and
rate of ADA transition (Cl ) is a sigmoidal Emax model:

,{0] L= g(C1cy.i'1086101+’7401)
R

1 | Emax,Cl-lefl

i =T Ry cr’s

Here, C1,; is avelumab concentration in the central
compartment in individual 7 at time ¢, E,, 1. is the typical
value of the maximal possible change in A, relative to
baseline, ECs is the typical value of the concentration at
which 50% of E,,,. ¢. is reached, and y“! describes the
shape of the relationship. The direction of the maximum
change (i.e. an increase or a decrease) was not specified but
was limited to a range of — 100% to 500%.

Covariate model

Potential covariate relationships were explored graphically
by plotting the potential covariates versus the parameters of
interest. Graphical exploration procedures were only relied
upon if the degree of n-shrinkage in the parameters was
reasonably low (<30%) [20].

Covariate analysis for the population PK model
was restricted to the relationship between the different
categorizations of ADA status (ADAEVER, ADAONE,
ADALOCF, etc.) and avelumab CL. The ADA-CL
relationship was implemented using a linear function:

CL, =TVCL- (1 +6,p,)

@ Springer

Here, CL; is CL in individual i, TVCL is the typical
value of CL in the population, and 68,,, is the estimated of
change in CL when ADA+ . For the DTMM and CTMM,
covariate relationships included demographics (age, sex,
and race), disease-related status (serum albumin, C-reac-
tive protein [CRP], Eastern Cooperative Oncology Group
performance score [ECOG] status, tumor type, and base-
line tumor burden), previous and current concomitant ther-
apies (previous use of biologics or PD-L1 inhibitors), and
baseline laboratory results and organ function (aspartate
transaminase [AST], alanine transaminase [ALT], creati-
nine, creatinine clearance, bilirubin, estimated glomerular
filtration rate [eGFR]). Categorical covariates were tested
using a linear function and continuous covariates were
tested using power functions (see below).

Covariate model development was performed stepwise
(using the stepwise covariate modeling tool in Perl-speaks-
NONMEM [PsN], version 5.3.0) [21, 22]. Each candidate
covariate was tested on each of the parameters of interest,
one at a time. The parameter-covariate relationship pro-
ducing the largest change in the NONMEM objective func-
tion value (OFV) was retained. This process was repeated
as a series of forward model-building steps until no further
parameter-covariate relationships were present that met the
forward inclusion criterion (a change in OFV of — 3.843,
corresponding to a nominal significance level of p=0.05).
A backward elimination process was then undertaken, in
which each relationship was removed one at a time. At
each backward step, the parameter-covariate relationship
with the lowest change in OFV and not meeting the back-
ward elimination criterion (a change in OFV of + 10.83,
corresponding to a nominal significance level of p=0.001)
was removed. The process was concluded when no further
parameter-covariate relationships could be removed.

The testing of categorical covariates was implemented
using a linear function, as follows:

PARCOVi = PARi : (1 + HPAR,COV,val)

where PARCOV , is the parameter value for individual i, PAR,
is the typical value of the parameter in the population, and
Opar.cov.va 1S an estimated parameter corresponding to the
unique value of the categorical covariate in individual i.
For the largest or reference category, Opsg cov Was defined
as 0. Covariate categories containing less than 20 patients
were not separately tested (except for tumor type) but instead
lumped with the reference case (typically the category with
highest frequency in the population).

Testing of continuous covariates was performed using
a power function, as follows:
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COV.\ Prarcov

PARCOV; = PAR, - <—'>
cov

where PARCOV ; and PAR, are as previously defined, COV, is
the value of the covariate in individual i, COV is the median
value of the covariate in the population, and 0pz coy is @
parameter describing the shape of the relationship of the
covariate to the parameter.

Model evaluation and qualification

Stratification was used when appropriate to ensure that
the model could be evaluated adequately across important
subgroups of the data. The adequacy of the models was
evaluated using visual predictive checks (VPC) [23].
The population PK and PK-ADA models were used to
simulate 500 replicates (model development) or 1000
replicates (external validation) of the analysis data set.
Statistics of interest were calculated from the simulated
and observed data for comparison: the 2.5th, 50th
(median), and 97.5th percentiles of the distributions of
the simulated concentration at each sampling time bin
were calculated. These percentiles of the simulated data
were plotted versus time, with the original observed data
set and/or percentiles based on the observed data overlaid
to visually assess concordance between the model-based
simulated data and the observed data.

Final models were used to predict dependent vari-
ables (avelumab concentrations and/or ADA data) based
on the patients in the data set who were set aside for
external validation (20% of the data set) at the individual
and population level (the latter using VPCs). These were
compared with observations to provide an assessment of
the model’s predictive ability.

Results

Population PK models with ADA as time-invariant
or time-varying covariate on clearance

The increase in avelumab CL attributable to ADA+ status
ranged from 8.5% (time-varying model using the time-
course of ADA status to influence CL) to 19.9% (time-
invariant model with inter-occasion variability [IOV] in CL).
The IOV in CL (4%) was negligible compared with inter-
individual variability (ITV) in CL (34%), and the inclusion of
IOV did not change the estimates of IIV. Simulation-based
evaluations (VPCs) confirmed that predictive performance
of the PK models was acceptable. The results of the effects
of ADA on avelumab CL and the associated computation
burden (relative estimation time) are summarized in Table 2.
The parameter estimates for each model (Table 7) and the
goodness of fit plots for the population PK model (Fig. 9) are
provided in the supplementary material.

Table 2 Summary of effect of ADA status on avelumab CL conditioned on the modeling approach

Model Type Covariate Time-variant Estimated Increase TVCL (L/h) CL ADA—/CL Data Set Compu-
Relationship with Relationship  in CL (%) for ADA+(L/h) Modification tational
TVCL ADA+ Burden*
PPK without IOV in CL
None NA NA 0.0285 0.0283/0.0332  None -
Separate TVCL No NA 0.0279/0.335 0.0282/0.0339 None Low
ADAEVER No 19.0 0.0279 0.0282/0.0339  None Low
ADAONCE Yes 10.6 0.0283 0.0282/0.0344  None Low
ADALOCF Yes 8.5 0.0285 0.0293/0.0314 None Low
ADALOCF Yes
PPK with IOV in CL
None NA NA 0.0285 0.0289/0.0342  None High
ADAEVER No 19.9 0.0285 0.0280/0.0335 None High
Joint ADA/PK model
Mono-directional ~ Probability of ADA+  Yes 14.9 0.0285 fix 0.0261/0.0317  Substantial ~ High
Bi-directional Probability of ADA+ Yes 11.6 0.0285 fix 0.0258/0.0313  Substantial ~ High

ADAEVER time-invariant categorical covariate (0=“ADA— Never” or 1="ADA+: At least once”); ADAONCE time-variant categorial
covariate, CL mean of individual clearance values, IOV inter-occasion variability (evaluation limited to the first 12 visits), NA not applicable,
PPK population pharmacokinetic, TVCL typical population value of clearance

* Computational burden relative to the base model: low: 1-4-fold increase in run times; moderate: 4-8-fold increase in run times; high: > 8-fold

increase in run times
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Markov models for ADA status

The structures of the population ADA models are provided
in Fig. 2 (DTMM), Fig. 3 (CTMM), and Fig. 4 (joint
PK-CTMM). In the DTMM, the probability of ADA+ or
ADA - status was obtained by estimating the transition
probability from ADA status at the current occasion,
irrespective of the time since the previous occasion. For
the CTMM, the time between occasions was considered to
obtain the probability of ADA+ or ADA— status because the
influence of the previous ADA status on the probability of
the current ADA status typically decreases with increasing
time between occasions.

The DTMM estimated the probability of baseline
ADA+ status as 2.12% (Table 3). The probability of a transi-
tion from ADA— to ADA+ (p01) status was 0.7%. The prob-
ability of a person transitioning from ADA+to ADA— status
(p10) was 25.4%. The relationship between tumor type and
p01 was the only significant covariate relationship in the
model. The estimate of p01 was 0.73% for NSCLC (the most
common tumor type), 1.8% for GC/GEJC, 0.36% for UC,
0.35% for MCC, and 0% for other solid tumors (including
lung, gastrointestinal tract, skin, breast, head and neck can-
cers). The tumor type relationship with p0O1in the final SCM
model was simplified by removing the relationships between
tumor types on p01 that were not statistically significant one
by one. The relationship between GC/GEJC and p01 was the
only statistically significant relationship (see Table 3). VPCs
confirmed the predictive characteristics of DTMM across

tumor types. The VPCs for GC/GEJC tumors are shown in
Fig. 5.

The DTMM-predicted time course for ADA+ sta-
tus (pl) was evaluated as a time-varying ADA covari-
ate in the population PK model. This enabled a gradual
change to maximal probability when switching from
ADA- to ADA+ status instead of an abrupt step change
as was the case with the ADAONCE (“Not yet ADA+"”
or “ADA+ and thereafter”) approach (see Fig. 6). The
increase in avelumab CL attributable to a transition from
ADA- to ADA+was 41% (90% PI 17%, 52%) in patients
with GC/GEJC, 18% (90% PI 18%, 26%) with NSCLC,
11% (90% PI 7%, 12%) with MCC, and 11% (90% PI
7%, 13%) with UC (examples of individual patients are
provided in Fig. 6). However, this model did not address
the immortal time bias associated with step change from
ADA- to ADA+. Although this approach differentiates
the effect of ADA+ status on CL between individuals (dif-
ferent maximum probabilities), once an individual’s maxi-
mum probability is attained, the value remains constant.
This approach may be considered a sequential ADA-PK
rather than a joint model to link PK and ADA models.

The CTMM estimated the rate of change in ADA status
(parameter estimates for the important models are pro-
vided in Table 4). The final CTMM included the effects
of baseline ADA status and tumor type on the rate con-
stant for changing from ADA— to ADA+ (4g;). This rate
constant was 3.8-fold higher when patients were ADA+ at
baseline. Compared to NSCLC, 4, was 17% higher in
patients with GC/GEJC, 37% lower with UC, 38% lower

Table3 NONMEM parameter estimates for the discrete-time Markov models

Parameter Base Model Final SCM model Reduced
Covariate Model

DTMM model %RSE %RSE %RSE
OFV 2517.934 2479.973 2485.735
AOFV 0 —37.961 —32.199
Typical value for P1 at baseline (logit scale) -3.83 1.3% -3.83 1.6% -3.83 1.1%
Typical value for PO1 (logit scale) —-493 4.2% -491 4.5% —5.05 4.5%
Typical value for P10 (logit scale) - 1.08 6.2% - 1.08 9.7% - 1.08 52%
Change in PO1 relative to NSCLC

GC/GEIC —0.191 22.4% -0.215 17.1%

ucC 0.142 68%

MCC 0.157 67.5%

Other solid tumors 0.971 71.9%

IIV on P1 baseline, % 7.1%* 7.1%* 7.1%*

IV on PO1, % 186.6% 15.7% 132.1% 31.8% 129.1% 27.9%

IIV on P10, % 7.1%* 7.1%* 7.1%*

OFYV objective function value, AOFV change in OFV from baseline model, P/ probability of ADA+, P01 probability to transition from ADA—

to ADA+, P10 probability to transition from ADA+to ADA—, %RSE relative standard error (percentage), SCM stepwise covariate model

“Indicates fixed parameters
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Fig.5 Visual predictive check for the population discrete-time
Markov model. Top panel: all tumor types. Bottom panel: GC/
GEJC tumors (in JAVELIN Gastric 100). The open circles show the

with MCC, and 99% lower with other solid tumors (there
were no ADA+ patients in the model development data
set). The model under-predicted the time-course of the
probability of ADA status for the patients with NSCLC
in the later part of study JAVELIN Lung 100. The final
CTMM included the same covariate relationships as in the

observed fractions versus time and the shaded area shows the corre-
sponding model-based 95% confidence interval

final DTMM.: baseline ADA status and tumor type on Ay,.
The VPCs for the final model are shown in Fig. 7.
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Fig. 6 Demonstration of the time-course of probability of ADA+ and
the time-invariant (ADAEVER) and time-variant (ADAONCE,
ADALOCEF) categorization of the ADA data for five random patients
who were ADA+ at least once. The open circles show the actual ADA
values. The red lines show the values for ADAEVER, the green lines

Joint PK-ADA models

The parameter estimates for the important models are pro-
vided in Table 5. The time-course of p1 compared to other
ADA categorizations for several randomly selected patients
is shown in Fig. 8.

@ Springer

are ADAONCE, and the purple lines are ADALOCEF. The light blue
line is MCC, gray lines are NSCLC, and the yellow line is GC/GEJC.
p(ADA+) is the individual probability of ADA+from the discrete
time Markov model

The relationship between p1l and CL was estimated, and
the maximum increase in clearance was 11.6% and 15.0%
for the mono- and bi-directional joint PK-ADA models for
the linear model and 21.7% for the nonlinear model, respec-
tively. With respect to the relationship between avelumab
exposure and A,;, maximum decrease in 4y was 37% with
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Table 4 NONMEM parameter estimates continuous-time Markov model

Parameter

CTMM Model Base Model %RSE Baseline ADA+on Ay, %RSE Final Model %RSE

OFV 5452566.033 5452534.992 5452478.918

AOFV 0 —31.041 - 87.115

Typical value for 4, /h 0.00461 18.10% 0.00446 18.10% 0.00404 20.50%

Typical value for 4, /h 0.139 17.60% 0.142 17.80% 0.146 17.70%

Baseline ADA+: change in Ay, 4.84 40.50% 4.38 42.20%

Change in A, relative to NSCLC
GC/GEIC 1.17 30%
ucC —0.404 48%
MCC -0.373 88.50%
Other solid tumors —0.99*

IIV on Ay, % 0%* 0%* 0%*

IIV on K21, % 0%* 0%* 0%*

OFYV objective function value, AOFV change in OFV from baseline model, 4, transit rate constant ADA— to ADA+, A, transit rate constant

ADA+to ADA—, %RSE relative standard error (percentage)
“Indicates fixed parameters

50% of the maximum decrease estimated to occur at a con-
centration of 349 pg/mL. This estimate is markedly higher
than the maximum avelumab concentration for adults for
the clinical dose 800 mg q2w (geometric mean 256.3 ug/
mL [24]). The relationship curve was relatively steep with
y of 2.58.

The portion of the data set not used in the model
development was reserved for external validation. VPCs
were performed with the parameter estimates from the
model development data set. The VPCs confirmed that the
PK models with ADA status as a time-varying covariate,
the final DTMM, and final CTMM were all able to predict
the new data with acceptable accuracy and confirmed the
predictive ability of the models.

Discussion

Joint models refer to models that simultaneously analyze
different types of outcomes or variables [25]. Bi-directional
joint models are models that consider interactions of
relationships in both directions between the outcomes or
variables. Broadly speaking, joint modeling is the estimation
of two or more statistical submodels into a single joint
model. Such models provide more efficient estimates of the
effects and can reduce bias in the estimates of the overall
effect [26].

We developed a joint model to describe the bi-directional
effects of the probability of ADA+ status (a CTMM) on the
CL of avelumab (a two-compartment disposition PK model
with time-varying clearance) and the effect of the avelumab

concentrations on the rate of ADA— to ADA+ transition. In
this analysis both the PK and ADA models were described
using ODEs, which facilitated combining the ADA and PK
models. The ADA and PK models were linked by estimating
the correlation in the random effects (inter-individual vari-
ability) in clearance (CL) and transition rate constant (4,;)
and by separate link functions for the effect of ADA+ on
CL (a sigmoidal Emax model) and the effect of the amount
of avelumab in the central compartment on A,. Insufficient
data were available to assess the impact of neutralizing
antibodies.

Joint models are computationally intensive. A stepwise
approach was used, starting with the development of
separate PK and ADA models, with the models with shorter
runtimes explored first (population PK model without IOV,
and DTMM of ADA) before developing the models that
required longer (the CTMM for ADA, and the joint CTMM
ADA-PK model). Both the PK and ADA CTMM were
modeled using sets of ODEs, resulting in long runtimes,
but this made subsequent combination of the models more
straightforward (see Fig. 4).

Effect of ADA on avelumab CL was previously estimated
(using ADAEVER) as 12.3% (95% CI 7%, 18%) in a full
covariate model [11]. For the current analysis, the model
was reduced to the base model with bodyweight as the
only maintained covariate. With the reduced model the
ADA effect on clearance ranged from 8.5% (ADALOCEF) to
19.9% (ADAEVER with IOV in CL). The estimates of IIV
on clearance or the estimates of the parameters describing
the time-varying component of clearance did not appear to
be influenced by different ADA categorizations.
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Fig.7 Visual predictive check

for the final continuous-time

Markov model for GC/GEJC, 10
UC, NSCLC, and MCC. The
open circles show the observed
fractions versus time and the
shaded area shows the cor-
responding model-based 95%
confidence interval
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Modeling immunogenicity has been approached in a
number of ways in the literature, most commonly by incor-
porating as a binary variable on CL in the covariate sub-
model [27, 28]. Several alternative approaches have been
proposed at scientific meetings, but few have been published
in peer-reviewed form to date. One suggested approach,
which addressed interspecies scaling of a recombinant com-
plement factor I, used a mixture model with two populations
representing the presence and absence of ADA-dependent

@ Springer

Time (months)

clearance in non-human primates, and included estimation
of an ADA-dependent CL and an additional CL parameter
along with the time of its onset to account for the potential
effects of ADA in humans [29]. A more complex approach
proposed by Niebecker et al. comprised modeling immune
response (time of seroconversion) using an ADA surro-
gate [28]. In another approach, a semi-mechanistic PK/
PD model was developed to characterize the dynamics of
ADA in cancer patients receiving the V937 oncolytic virus
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Table 5 NONMEM parameter estimates joint PK and ADA models

Parameter
Joint Model Base Model Correlation CL, C1, 4j; ADAonCL  ADA on CL+C1 on ADA ADA on CL
(Emax)+Cl1
on ADA
OFV 20230779.285 20230699.696 20230703.331 20230659.164 20230709.255
AOFV 0 —79.589 —75.954 —120.121 —70.03
Avelumab population PK model
Clearance (CL), L/h 0.0272* 0.028 0.0272* 0.0275 0.0272*
Central volume (V1), L 3.52% 3.52% 3.52% 3.52% 3.52%
Peripheral volume, L 0.582% 0.582% 0.582% 0.582% 0.582%
Intercompartmental clearance, L/h 0.0128%* 0.0128* 0.0128%* 0.0128* 0.0128%*
Lax —0.015* - 0.015* —0.015*% —0.015* —0.015%
Ts, days 51.9% 51.9% 51.9% 51.9% 51.9%
Y 2.59% 2.59% 2.59% 2.59% 2.59%
Continuous Markov model
Rate constant ADA— to ADA+(4,;),  0.00404* 0.00404 0.00404* 0.00406 0.00404*
/h
Rate constant ADA+to ADA— (4,y),  0.146* 0.146* 0.146* 0.146* 0.146*
/h
Change in A, relative to NSCLC
GC/GEIC 1.17* 1.17* 1.17* 1.17* 1.17*
ucC — 0.404* —0.404* — 0.404* —0.404* — 0.404*
MCC —0.373% - 0.373* - 0.373% -0.373* - 0.373*
Other solid tumors - 0.99% —0.99* - 0.99% - 0.99* —0.99%
Baseline ADA+: change in K34 4.38% 4.38% 4.38* 4.38%* 4.38%*
Effect of ADA on CL
Slope of ADA effect on CL 0.116 0.15
Maximum change 0.217
50% of maximum change 0.446
Shape of effect curve 1
Effect of exposure on ADA
Maximum change —0.374 —0.405
50% of maximum change 349 387
Shape of effect curve 2.58 2.75
IIVon CL, % 38.5% 40.1% 38.5% 39.9% 46.1%
IIVon V1, % 23.4% 25.7% 23.4% 24.6% 24.8%
IIV on 4y;, % 218.1% 226.1% 218.1% 329% 414.4%
IIV on 4,9, % 0%* 0% 0%* 0% 0%
IIV on TMAX, % 21.8%* 21.8%* 21.8%* 21.8%* 21.8%*
Proportional residual error PK (6,,,,), % 21.1%* 21.1%%* 21.1%* 21.1%* 21.1%*
Additive residual error PK (6,44), ng/mL  2378.6* 2378.6* 2378.6* 2378.6* 2378.6*

CL clearance, CI avelumab concentration in central compartment, OFV objective function value, AOFV change in OFV from baseline model,
Ao; transit rate constant ADA— to ADA+, A, transit rate constant ADA+to ADA—, y”! shape of the effect curve for ADA on CL; y¢!: shape of

the effect curve for exposure on ADA

“Indicates fixed parameters

in monotherapy or in combination with pembrolizumab,
whereby the time course of ADA was modeled using the
population-pharmacokinetic parameter-and data (PPP&D)
approach [30], in which population PK parameters are

fixed, but individual PK parameters are estimated simulta-
neously with the ADA model based on both PK and ADA
data [31]. Time to event models have also been employed
to describe the time to appearance of ADA [27]. Therein,
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Fig.8 Demonstration of the time-course of probability of
ADA+[p(ADA+)] and the time-invariant (ADAEVER) and time-
variant (ADAONCE, ADALOCF) categorization of the ADA data
for five random patients who were ADA+at least once. The open

ADA formation, which mainly took place within 3 months
of starting the treatment, was predicted to be lower with
higher trough concentrations, which could be achieved with
the use of higher doses and/or increased dosing frequency
(e.g. loading doses) [32].

In immuno-oncology settings, during treatment with
immune checkpoint inhibitors including avelumab, time-var-
iance in CL, attributed to changes in disease status, has been

@ Springer

circles show the actual ADA values. The lines show the values for
ADAEVER, the solid green lines are ADAONCE, and the purple dot-
ted lines are ADALOCEF. The light blue line is MCC, gray lines are
NSCLC, and the yellow line is GC/GEJC

observed [11, 32, 33]. Consequently, exposure-response
analyses using baseline exposure metrics have been found
to be more consistent with the true exposure/dose—response
relationship. The use of time-invariant ADA (ADAEVER)
as a binary covariate may affect the estimate of baseline CL
and derived exposure metrics that may mask or confound the
true exposure—response relationship. Additionally, due to the
fact that the ADAEVER approach conservatively treats all
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Table 6 (continued)

18

safety profiles with dose adjustments in different studies, prior treatment
experiences, or with unexpected clinical findings. This approach also

enables simulations of alternate dosing regimens with respect to the

probability/time-course of ADA development
Robust, stable population PK models and CTMM should be developed prior

The joint model may be helpful to understand differences in efficacy and/or

Utility

ADA transition rates) prior to combining the PK and ADA models in a

Assess correlations in the PK and ADA model parameters (clearance and
joint model to assess feasibility for developing a joint model

Considerations

Joint PK-ADA

Model

Springer

If the population PK model is coded using sets of differential equations,

combination with CTMM is feasible. As a first step the correlation

in clearance and the transition rate from ADA— to ADA+ should be

to developing the joint models. The computational burden will limit the

estimated. If the CTMM did not include IIV in transition rates, assign the

number of parameters that may be estimated (depending on the size of the

data set)
Depending on the complexity of the bi-directional effects, longitudinal

estimate from the DTMM as the initial estimate or fix IIV to a large value

(e.g.2)

models may be useful to answer questions relating to the effects

of exposure on probability of becoming ADA+:
- concentrations in which the probability may exceed a specific threshold

(e.g. 50%) and to relate this point to concentration ranges for specific
tumor types, or concentrations of interest (e.g. Cmax or trough

concentrations);
- the impact of increasing concentrations of drug on the probability of

becoming ADA+;
- the probability of becoming ADA+ at time-points of interest to simplify the

protocol requirements for ADA data collection

time points during treatment as being ADA+, bias is intro-
duced in estimation of the effect of immunogenicity on CL,
questioning the accuracy of estimates of ADA effect on PK.
The estimated time to reach 50% of the maximum change
in CL was consistent for all ADA covariate models (around
12 months after starting treatment). During this period the
DTMM demonstrated that the probability of remaining
ADA- decreased rapidly (Fig. 5), again demonstrating the
importance of unbiased estimates of baseline CL for expo-
sure—response analyses. The estimation of IOV in a large
data set with a long period of observation is cumbersome
and drastically increases the computational burden (Table 2),
as well as introducing significant additional complexity
when using models for simulation. Assessment of IOV
should be performed early during the development program
to ensure that the clinical importance of the observed het-
erogeneity in the mechanisms and outcomes is understood
prior to analyzing data from pooled studies or studies with
long duration. In this analysis, the IOV over the first 12 visits
was investigated, due to the large number of visits in study
JAVELIN Lung 100. The first 12 visits covered a period of
ca. 3 years (168 weeks, range 148 to 198 weeks) and pro-
vided adequate coverage of the observed ADA transitions.
The addition of IOV in CL did not change the estimate of
the ADA effect on CL: across the models the increase in CL
due to ADA using a time-invariant covariant was 20%. The
estimate of IOV in CL was 4% across all models and thus
negligible compared to the estimate of IIV in CL of 34%.
Thus, IOV was not incorporated in the final joint PK-ADA
models.

Markov models have previously been used to analyze
ADA dynamics. Hidden Markov (HM) models were
developed for satralizumab, a humanized IgG2 monoclonal
recycling IL-6 receptor antagonist for treatment of
neuromyelitis [34], and certolizumab pegol, a PEGylated
Fc-free TNF inhibitor for treatment of chronic inflammatory
diseases [35]. A HM model is a class of probabilistic models
that connect observable variables (e.g. ADA+or ADA-)
to hidden underlying states (immunological response)
where the next state depends on the previous state [34].
The probabilities of the observed ADA-state to the hidden
immunological state were modeled as continuous random
variables that could be correlated through a bivariate
Gaussian probability density function [35]. The HM ADA
models assumed that all patients started in a state of no ADA
production, and only the probabilities of transition were
estimated. The stationary probabilities (ADA— transition
to ADA—, and ADA+ transition to ADA+) were not
estimated. The HM model for certolizumab pegol suggested
that ADA are formed earlier than assays can detect. In the
analysis of ADA data for avelumab, DTMM estimated that
2.2% of patients were positive at baseline, and baseline
ADA+ status was a covariate in the DTMM and CTMM
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models. Although this estimate is in agreement with the
incidence of positive baseline ADAs in clinical trials (range
1% to 20%) [36], the covariate was estimated with high
uncertainty in the CTMM, indicating that caution is needed
when interpreting transition rates in patients with positive
baseline ADA measurements. As estimating the stationary
probability (ADA+ transition to ADA+) was required, the
HM model as implemented for certolizumab pegol was not
considered appropriate for the current analysis.

In the DTMM, the probability of a transition from
ADA- to ADA+ (pOl) status was 0.7% whereas the
probability of a patient transitioning from ADA4 to
ADA- status (p10) was 25.4%. This difference may reflect
the natural decline in antibody levels due to a diminished
immune response or immune tolerance, treatment
interventions (such as immunosuppressive therapies), or
variability in sensitivity and specificity in assays used to
detect ADA [37].

The bidirectional joint PK-ADA model we developed for
avelumab suggested that higher avelumab concentrations
resulted in a decrease in transition rate to the ADA+ state.
This finding is in line with the previous analyses [30,
38], including application of HM models, which have
indeed proposed that increased drug exposure reduces
immunogenicity, although such findings in oncology are
somewhat conflicting [38]. Differences in ADA rates among
tumor types have previously been reported for another
immune checkpoint inhibitor, pembrolizumab, although the
ADA incidence was overall low [39]. In addition, there was
high uncertainty in the estimates of the differences between
tumor types (%RSE >30%), indicating that the data set did
not contain adequate information and should be interpreted
with caution. A pooled analysis of 12 atezolizumab clinical
trials did not identify meaningful differences in ADA
incidence between tumor types [40].

We have proposed considerations and utility of the
population PK, ADA, and joint PK-ADA models (Table 6).
There is a fine balance between the information gained
and resources required to do so. All three approaches
were successful in providing quantitative insight into the
relationship between avelumab exposure and ADA formation.
Accounting for the phase of development, data available, and
clinical need to understand the relationship between ADA
dynamics and drug exposure, efficacy and/or safety can help
guide the choice of the type of analysis most appropriate.

Conclusions

This analysis investigated approaches to quantitatively
account for immunogenicity in an immuno-oncology setting
for an immune checkpoint inhibitory monoclonal antibody.
The approaches included ADA as a covariate in a population

PK model and Markov models of ADA status (ADA+ or
ADA-). The final joint PK-ADA model incorporated
bidirectional effects of ADA status on avelumab clearance
and avelumab exposure on ADA status. None of the
investigated covariates other than baseline ADA status
and tumor type were of relevance for assessing avelumab
immunogenicity. The joint PK-ADA model estimated a
lower rate of change from ADA— to ADA+ status with
higher avelumab concentrations. Viewed from a broader
perspective, the analyses presented here illustrate a roadmap
for approaching quantitative characterization of the inter-
relationships of dynamics of PK and ADA for quantitative
clinical pharmacology characterization of biologics.
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